SINGULAR COMPACTNESS AND THE NEVEU DECOMPOSITION

BY

G. GRABARNIK AND E. HRUSHOVSKI

Institute of Mathematics The Hebrew University of Jerusalem, Jerusalem 91904, Israel

ABSTRACT

The aim of this note is to determine the Neveu decomposition for the action of an amenable semigroup of L_1 positive contractions using a criterion for singular compactness; that is, for the singularity of all the measures in a compact convex set of functionals in L_{∞} .

Consider the Lebesgue space (X, m, \mathbb{B}) , and let G be a weakly continuous, locally compact semigroup of positive L_1 contractions. We denote the action of $g \in G$ on a function f by gf. Suppose that there exists a left invariant measure ν on G and increasing sequence $\{K_l\}_{l \in \mathbb{N}}$ of compact subsets satisfying the following (Følner) conditions:

- (i) $0 < \nu(K_l) < \infty$,
- (ii) for every $g \in G$,

$$rac{
u(K_l \, g riangle K_l)}{
u(K_l)} o 0, \quad rac{
u(gK_l riangle K_l)}{
u(K_l)} o 0 \quad ext{ as } l o \infty$$

The space L_{∞} ($L_{\infty}(X, m, \mathbb{B})$) is the Banach conjugate to L_1 and denote by L_{∞}^* the conjugate of L_{∞} . Let

$$A_l f = \frac{1}{\nu(K_l)} \int_{K_l} g f d\nu(g), \quad f \in L_1$$

and

$$A_l^*f=rac{1}{
u(K_l)}\int_{K_l}g^*fd
u(g),\quad f\in L_\infty.$$

Received September 22, 1993

A positive function $h \in L_{\infty}$ will be called **very weakly wandering** if

$$||A_l^*h||_{\infty} \to 0 \quad \text{as } l \to \infty.$$

Each functional $\mu \in L_{\infty}^*$ can be decomposed into $\mu = \mu_n + \mu_s$, where μ_n is absolutely continuous with respect to the measure m and μ_s is singular with respect to m. A functional μ is called a measure if it is positive and $\mu(\chi_x) = 1$, where χ_A denotes the characteristic function of the set $A \in \mathbb{B}$. Note that by the Banach-Alaoglu theorem, the set of all measures is compact in the weak* topology. At first we shall characterize the case when a convex subset of singular measures has only singular measures as limit points in the weak* topology. (In [OW] it is proved (theorem 6.1) that two disjoint compact convex sets of Borel measures can be separated by a G_{δ} set. We remark that the proof of Theorem 6.1 can be modified in order to give another proof of Theorem 1 and vice versa.)

THEOREM 1: Let C be a convex set of singular measures. The following conditions are equivalent:

- (i) The weak* closure of C consists of singular measures.
- (ii) There exists a sequence of sets E_n, E_n ∈ B, E_n ↑ X so that for every μ ∈ C, μ(E_n) = 0.

In order to prove the theorem we need the following lemma. We denote by $\mathbb{R}^{+,n}$ the cone of positive vectors in \mathbb{R}^n .

LEMMA: Let $C \subseteq \mathbb{R}^{+,n}$ be a convex compact subset,

$$P_{\delta} = \{ s \subset \{1, 2, \dots, n\} \colon \frac{|s|}{n} \ge 1 - \delta \}, \quad H_{s}(\delta) = \{ \bar{x} \in \mathbb{R}^{+, n} \colon \sum_{i \in s} x_{i} < \delta \},$$
$$\bar{H}_{s}(\delta) = \mathbb{R}^{+, n} - H_{s}(\delta), \quad \bar{H}(\delta) = \bigcap_{s \in P_{\delta}} \bar{H}_{s}(\delta).$$

Assume that

$$C \subset \bigcup_{t \in P_{\delta}} H_t(\delta).$$

Then $C \subseteq H_t(2\delta)$ for some $t \in P_{2\delta}$.

Proof: It is easy to see that $\bar{H}(\delta)$ and $\bar{H}_s(\delta)$ are convex, so there exists a hyperplane $\sum \alpha_i x_i = 1$ such that for $\bar{x} \in C$ we have $\sum \alpha_i x_i \leq 1$ and for $\bar{y} \in \bar{H}(\delta)$ we have $\sum \alpha_i y_i > 1$. Letting $\bar{y} \in \bar{H}(\delta)$ tend to infinity we see that $\alpha_i \geq 0$. We

claim that $Q = \{\bar{x} \in \mathbb{R}^{+,n} : \sum \alpha_i x_i \leq 1\}$ is contained in $H_s(2\delta)$ for some $s \in P_{2\delta}$. Note that $Q \subset \bigcup_{t \in P_{\delta}} H_t(\delta)$. If Q is not in $H_s(2\delta)$ for any $s \in P_{2\delta}$, then the set $A = \{i \in \{1, 2, \ldots, n\} : \alpha_i < \frac{1}{2\delta}\}$ has $|A| > 2\delta n$; otherwise its complement $t = A^c$ belongs to $P_{2\delta}$ and $Q \subset H_t(2\delta)$. Consider the point \bar{x} with coordinates

$$x_i = \begin{cases} \frac{1}{\alpha_i |A|} & \text{for } i \in A, \\ 0 & \text{for } i \notin A. \end{cases}$$

Then $\sum \alpha_i x_i = 1$ or $\bar{x} \in Q$. On the other hand, for every $t \in P_{\delta}$, $|t| > n - n\delta$ so that $|t \cap A| > \frac{1}{2|A|}$ and

$$\sum_{i \in t} x_i \geq \sum_{i \in t \cap A} \frac{1}{\alpha_i |A|} > \frac{2\delta |t \cap A|}{|A|} > \delta,$$

which contradicts the fact that $Q \subseteq \bigcup_{t \in P_{\delta}} H_t(\delta)$.

Proof of Theorem 1: $(ii) \Rightarrow (i)$ is obvious.

(i) \Rightarrow (ii) Let K be a compact subset of singular measures. To every $F \in \mathbb{B}$ with $m(F) > 1 - \epsilon$ we associate $U_F = \{\mu : \mu(F) < \epsilon\}$. U_F is a cover of the compact set K. Let U_{F_1}, \ldots, U_{F_k} be a finite subcover. Let G_1, \ldots, G_n be a subpartition of $\bigcup_{j=1}^k F_j$ satisfying $m(G_i)/m(G_j) \leq 1.1$ for each $1 \leq i, j \leq n$ and such that for each j there exists a subset $I_j \subset \{1, 2, \ldots, n\}$ with

$$F_j = \bigcup_{i \in I_j} G_i.$$

Define a mapping $h: K \to \mathbb{R}^n$ as $h(\mu) = (\mu(G_1), \ldots, \mu(G_n))$. Choosing δ appropriately one obtains a compact convex set C = h(K) satisfying the conditions of the lemma. According to the lemma there exists a subset $t \subset \{1, \ldots, n\}$ so that $|t| > n - 2n\epsilon$ and $\sum_{i \in t} \mu(G_i) < 2\epsilon$. So for $F = \bigcup_{i \in t} G_i$ we will have for every $\mu \in K, \mu(F) < \epsilon$ and $m(F) > 1 - 3\epsilon$.

COROLLARY: Let K be a bounded convex set of measures such that the restriction of K to some measurable subset $E_0 \in \mathbb{B}$ consists of singular measures and for every $E \in \mathbb{B}$, $E \subseteq E_0$ with $m(E) \neq 0$ there exists some $\mu \in K$ such that $\mu(E) > 0$. Then the closure of K in the weak* topology contains a measure μ_0 whose normal component $\mu_{0,n}$ satisfies $\mu_{0,n}(E') > 0$ for some $E' \subset E$, $E' \in \mathbb{B}$, with m(E') > 0.

The following theorem gives the Neveu decomposition for the action of an amenable semigroup. We remark that the proof is new and considerably shorter even in the single operator case [Kr, th. 6.3.9 and th. 3.4.6].

THEOREM 2: Let G be as before. The following conditions on a set $E \in \mathbb{B}$ are equivalent:

- (i) There exists a G-invariant function $f \in L_1$ with support E, and the support of every G-invariant function is contained in E.
- (ii) There exists a very weakly wandering function h ∈ L_∞ with support X \ E, and the support of each very weakly wandering function is contained in X \ E.

Proof: 1. Let \bar{x} be a weak^{*} limit point of the sequence $A_l^* x$. Then $A_l^* x$ converges strongly and for every $g \in G$, $g^* \bar{x} = \bar{x}$. Indeed,

$$||A_{l}^{*}g^{*}x - A_{l}^{*}x|| \leq ||x||\nu(gK_{l} \triangle K_{l})/\nu(K_{l}) \to 0.$$

For every $\epsilon > 0$ there exist $\lambda_1, \ldots, \lambda_j > 0$ with $\sum \lambda_i = 1$ and $\|\sum \lambda_i A_{l_i}^* x - \bar{x}\| < \epsilon$. Each $A_{l_i}^* x$ is in the norm closure of the convex hull of the $g^* x$ and so $\|A_l^* A_{l_i}^* x - A_l^* x\| \to 0$ as $l \to \infty$. This gives

$$||A_l^* x - \bar{x}|| \le ||A_l^* (\sum \lambda_i A_{l_i}^* x - \bar{x})|| + ||A_l^* \sum (\lambda_i A_{l_i}^* x - x)|| \to 0 \quad \text{as } l \to \infty.$$

2. Let $\mu \in L_{\infty}^{*,+}, \mu(X) = 1$. If $g^{**}\mu = \mu$, then for μ_n and μ_s we have $g^{**}\mu_n = \mu_n$, $g^{**}\mu_s = \mu_s$. Indeed, $g^{**}\mu_n \leq \mu$ implies $g^{**}\mu_n \leq \mu_n$. Since $||g^{**}\mu_s|| \leq ||\mu_s||$ and $||g^{**}\mu_s|| + ||g^{**}\mu_n|| = ||g^{**}\mu|| = ||\mu_s|| + ||\mu_n||$, and, moreover, $||g^{**}\mu_s|| \leq ||\mu_s||$ we must have $||g^{**}\mu_s|| = ||\mu_s||$. This implies $g^{**}\mu_s = \mu_s$ and hence $g^{**}\mu_n = \mu_n$.

3. There exists a G-invariant absolutely continuous measure μ whose support is maximal among such measures. This follows from the σ -finiteness of X. The support of μ is the set E in (i).

4. Let $P \subset X \setminus E$. We claim that there exists $P' \subseteq P$, $P' \in \mathbb{B}$, m(P') > 0such that every invariant measure vanishes in P'. Otherwise there exists $P_0 \in \mathbb{B}$ such that for every $P' \subset P_0$, $P' \in \mathbb{B}$, m(P') > 0 there exists an invariant measure μ with $\mu(P') > 0$. By the definition of E the restriction of μ to $X \setminus E$ is singular. The corollary to Theorem 1 now implies the existence of an invariant measure μ_1 with $\mu_{1,n}(P'') > 0$ for some $P'' \subseteq P$ satisfying $\mu(P'') > 0$. By (3) $\mu_{1,n}$ is also invariant; but since it is absolutely continuous, this contradicts the definition of E.

5. Thus there exists a sequence $E_n \uparrow X \searrow E$ with $\mu(E_n) = 0$ for every invariant measure μ . Let $\nu \in L_{\infty}^*$ and $A_{\alpha}^{**}\nu \to \nu_0$ be a convergent subnet in weak* topology. Since $\nu_0(E_n) = 0$ we have

$$A_{\alpha}^{**}\nu(E_n) \to 0$$

for every subnet α for which $A_{\alpha}^{**}\nu$ does converge. So $A_l^*(\chi_{E_n}) \to 0$ weakly^{*} or $||A_l^*(\chi_{E_n})||_{\infty} \to 0$ or χ_{E_n} is a very weakly wandering function. If we set $h = \sum 2^{-n} \chi_{E_n}$ then h satisfies the condition of (ii). (ii) \Rightarrow (i) is obvious.

Theorem 2 implies the convergence in measure of averages $A_l f$ (compare [Kr], Theorem 6.3.10).

COROLLARY: Let A_l be as before. For $f \in L_1$ the sequence $A_l f$ converges in measure.

Sketch of proof: On $X \\ E$ the convergence in measure follows from existence of very weakly wandering function with support $X \\ E$. On E and for f from L_2 the result follows from the Mean Ergodic Theorem [Gr]. By an approximation argument, one can extend this to L_1 .

COROLLARY: If the set of G-invariant measures contains only one absolutely continuous measure then there exists $E \in \mathbb{B}$, m(E) = 0 such that every singular measure is equal to 0 on $X \setminus E$.

ACKNOWLEDGEMENT: The authors would like to thank Prof. H. Furstenberg for considerable help in writing this note.

References

- [Gr] F. P. Greenleaf, Ergodic theorems and the construction of summing sequences in amenable locally compact groups, Communications on Pure and Applied Mathematics 26 (1973), 29-46.
- [Kr] U. Krengel, Ergodic Theorems, de Gruyter Studies in Math., Vol 6, 1985, 360 pp.
- [OW] D. S. Ornstein and B. Weiss, How sampling reveals a process, Annals of Probability 18 (1990), 905–930.
- [Pa] A. T. Patterson, Amenability, Mathematical Surveys and Monographs, Vol. 29, 1988, 452 pp.