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ABSTRACT 

The aim of this note is to determine the Neveu decomposition for the action 

of an amenable semigroup of L1 positive contractions using a criterion for 

singular compactness; that  is, for the singularity of all the measures in a 

compact convex set of functionals in Loo. 

Consider the Lebesgue space (X, m, B), and let G be a weakly continuous, locally 

compact semigroup of positive L1 contractions. We denote the action of g E G 

on a function f by g f .  Suppose that there exists a left invariant measure u on 

G and increasing sequence {K~}leN of compact subsets satisfying the following 

(Folner) conditions: 

(i) 0 < u(Kt) < oc, 
(ii) for every g E G, 

u(Kz gAKl) u(gKiAKl) 
,0, ,0  as l --* c~. 

u(Kl) u(Kl) 

The space L~ (L~(X ,m,B)  ) is the Banach conjugate to L1 and denote by 

L~ the conjugate of Lo~. Let 

Alf -- u(Kl) g fdu(g), f • L1 
I 

and 

A~f = v-~Kt) /K g* fdu(g), 
I 

f eLc¢ .  
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A positive function h E L ~  will be called v e r y  w e a k l y  w a n d e r i n g  if 

ItAThll  --* o a s  l c o .  

Each functional # E L *  can be decomposed into # = #n + #~ , where #n 

is absolutely continuous with respect to the measure m and #~ is singular with 

respect to m. A functional # is called a measure if it is positive and #(Xx)  = 1, 

where XA denotes the characteristic function of the set A E B. Note that  by 

the Banach-Alaoglu theorem, the set of all measures is compact in the weak* 

topology. At first we shall characterize the case when a convex subset of singular 

measures has only singular measures as limit points in the weak* topology. (In 

[OW] it is proved (theorem 6.1) that  two disjoint compact convex sets of Borel 

measures can be separated by a G~ set. We remark that  the proof of Theorem 

6.1 can be modified in order to give another proof of Theorem 1 and vice versa.) 

THEOREM 1: Let C be a convex set of singular measures. The following condi- 

tions are equivalent: 

(i) The weak* closure of C consists of singular measures. 

(ii) There exists a sequence of sets En, E,~ E B, E .  T X so that for every # E C, 

#(E~) = O. 

In order to prove the theorem we need the following lemma. We denote by 

R +,n the cone of positive vectors in R n . 

LEMMA: Let C C_ ]R+, '~ be a convex compact subset, 

P~ = {s C {1, 2 , . . . ,  n}: 14 _ 1 - a}, 
n 

= r ,n - 

H8($) = {~ E R+"~: ~ x, < ~}, 
iEs 

sEP~ 

Assume that  

C C U Ht(~). 
t6P6 

Then C C_ Ht(28) for some t E P2~. 

Proof: I t  is easy to see that  /~(8) and /{,(8) are convex, so there exists a 

hyperplane ~ a ixi  = I such that  for ~" E C we have ~ a ixi  < 1 and for ~ e 9 (8 )  

we have ~ aiyi  > 1. Letting • E/St(8) tend to infinity we see that  o t i>  0. We 
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claim that  Q = {2 E R+'n: ~ a~xi _< 1} is contained in/-/8(25) for some s E P2~. 

Note that  Q c UteP6 Ht(5). If Q is not in/-/8(25) for any s E P2~, then the set 

A = {i E { 1 , 2 , . . . , n } :  ~i < ~ }  has ]A] > 25n ; otherwise its complement t = A c 

belongs to P26 and Q c Ht(25). Consider the point 2 with coordinates 

1 for i E A, 
x i =  0 f o r i C A .  

Then ~ (~ixi = 1 or 2 E Q. On the other hand, for every t E P6 , I t] > n - n5 

so that  I t n A  I >  ~ and 

1 25]t M A] 
> E > - -  

Jet ~etnA IAI 

which contradicts the fact that Q c_ UteP~ Ht(5). 

P r o o / o f  Theorem 1: ( i i )~( i )  is obvious. 

(i) =~(ii) Let K be a compact subset of singular measures. To every F E B with 

m(F) > 1 - e we associate UF = {# : #(F) < ¢}. UF is a cover of the compact 

set K.  Let UF1,...,UF~ be a finite subcover. Let G1, . . . ,G,~ be a subpartition 
k of Uj=I Fj satisfying m(G~)/m(Gj) <_ 1.1 for each 1 _< i , j  <_ n and such that  for 

each j there exists a subset Ij C {1, 2 , . . . ,  n} with 

Fj= Uc . 
iElj 

Define a mapping h: K ~ R '~ as h(#) = (# (G1) , . . . ,  #(Gn)). Choosing 5 appro- 

priately one obtains a compact convex set C = h(K) satisfying the conditions of 

the lemma. According to the lemma there exists a subset t C {1 , . . . ,  n} so that 

Itl > n - 2ne and ~ie t  #(Gi) < 2e. So for F = oictGi we will have for every 

# E K , # ( F ) < e a n d m ( F ) >  1 -  3e. I 

COROLLARY: Let K be a bounded convex set of measures such that the restric- 

tion of K to some measurable subset Eo E ~ consists olf singular measures and 

for every E E B, E C_ Eo with m(E)  ~ 0 there exists some # E K such that 

#(E) > O. Then the closure of K in the weak* topology contains a measure #o 

whose normal component #o,n satist~es #0,,~(E ~) > 0 for some E ~ C E,  E ~ E B, 

with m( E') > O. 

The following theorem gives the Neveu decomposition for the action of an 

amenable semigroup. We remark that  the proof is new and considerably shorter 

even in the single operator case [Kr, th. 6.3.9 and th. 3.4.6]. 
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THEOREM 2: Let  G be as before. The following conditions on a set E E ] are 

equivalent: 

(i) There exists a G-invariant function f E L1 with support E, and the support 

of every G-invariant function is contained in E. 

(ii) There  exists a very weakly wandering function h E Lo~ with support X \ E, 

and the support of each very weakly wandering function is contained in 

X \ E .  

Proo~ 1. Let 5: be a weak* limit point  of the sequence A~x. Then  A~x converges 

s t rongly and for every g E G, g*5: = 5:. Indeed, 

]lA;g*x - A;xll <_ IIxlIv(gKzAK~)/v(K~) -~ 0. 

For every e > 0 there exist A 1 , . . . , A  5 > 0 with ~-~Ai = 1 and 

[[ ~ AiA'[x - 211 < e. Each A~ix is in the norm closure of the convex hull of 

the g* x and so liAr' A*,, x - A~ xll --* 0 as l --* ec. This  gives 

[[d~x - 5:]] _< [[d~(EAiAz*x - 5:)[[ + [[A~ E ( A i A I * x  - x)[[ ~ 0 as l ~ oc. 

2. Let # E L ~  +, #(X)  = 1. If g**p = p, then  for #n and #s we have g**Pn = 

pn, g**#s = #s. Indeed, g**p,~ _< p implies g**#n _< p,~ . Since [[g**Psl[ <- [[Psl[ 

and lig**#~]I + Iig**#,II = lig**#II = ]Ips]I + II#,II, and, moreover,  Iig**#~II _< II#,I] 

we m u s t  h a v e  IIg**  ll = II  ll. This implies g**#~ = #~ and hence g**~.  = 

3. There  exists a G-invariant  absolutely continuous measure  # whose suppor t  

is max ima l  among  such measures.  This  follows f rom the a-finiteness of X .  The  

suppor t  of # is the  set  E in (i). 

4. Let  P C X \ E .  We claim tha t  there exists P~ C_ P,  P~ E B, m ( P  ~) > 0 

such tha t  every invariant  measure  vanishes in p t .  Otherwise there  exists P0 E 

such tha t  for every Pt  C P0, P~ E 1~, m ( P  ~) > 0 there exists an invariant  measure  

# with #(P~) > 0. By the definition of E the restr ict ion of # to X \ E is singular. 

The  corollary to Theo rem 1 now implies the  existence of an invariant  measure  

Pl wi th  t t~ , , (P" )  > 0 for some P "  C_ P satisfying # ( P " )  > 0. By (3) #1, ,  is also 

invariant;  but  since it is absolutely continuous,  this contradicts  the definition of 

E.  

5. Thus  there  exists a sequence E,~ ~" X \ E wi th  t t (En) = 0 for every invariant  

measure  p. Let v E L *  and A**v ~ Vo be a convergent  subnet  in weak* topology. 

Since v o ( E , )  = 0 we have 

A**~,(E,~) ---* 0 
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for every subnet a for which A**u does converge . So A~[(XE~) ---, 0 weakly* 

or ]]A~(XE~)]]~ ----* 0 or XE,~ is a very weakly wandering function. If we set 

h = ~ 2-nXE,~ then h satisfies the condition of (ii). 

(ii)=~(i) is obvious. 1 

Theorem 2 implies the convergence in measure of averages A l f  (compare [Kr], 

Theorem 6.3.10). 

COROLLARY: Let Al be as before. For f C L1 the sequence A l l  converges in 

measure. 

Sketch of proof: On X \ E the convergence in measure follows from existence 

of very weakly wandering function with support X \ E. On E and for f from L2 

the result follows from the Mean Ergodic Theorem [Gr]. By an approximation 

argument, one can extend this to L1. 

COROLLARY: I f  the set of  G-invariant measures contains only one absolutely 

continuous measure then there exists E E ]~, m(  E) = 0 such that every singular 

measure is equal to 0 on X \ E. 
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